Empirical likelihood ratio with arbitrarily censored/truncated data by EM algorithm

Summary

Empirical likelihood ratio method (Thomas and Grunkmier 1975, Owen 1988, 1990, 2001) is a general nonparametric inference procedure with many nice properties. Recently the method has been shown to work with censored/truncated data with various parameters. But the computation of the empirical likelihood ratios with censored/truncated data and parameter of mean is non-trivial. We propose in this paper to use a modified self-consistency/EM algorithm (Turnbull 1976) to compute a class of arbitrarily censored/truncated empirical likelihood ratios where the constraint is of mean type.

Simulations show the chi square approximations of the log likelihood ratio performs well with the censored/truncated data. Examples and simulations are given in the following cases: (1) right censored data with a mean parameter; (2) left truncated and right censored data with mean type parameter.

AMS 1991 Subject Classification: Primary 62G10; secondary 62G05.
Key Words and Phrases: Self consistency, maximization, constraints, Wilks theorem.

1. Introduction

Empirical likelihood ratio method was first proposed by Thomas and Grunkmier (1975) to obtain better confidence intervals in connection with the Kaplan-Meier estimator. Owen (1988, 1990) and many others developed this into a general methodology. It has many desirable statistical properties, see the recent nice book of Owen (2001). A crucial step in carry out the empirical likelihood ratio method is to find the maximum of the log empirical likelihood function (LELF) under some constraints. In all the papers mentioned above, that is achieved by using the Lagrange multiplier method. It reduces the maximization over $n - 1$ variables to a set of p monotone equations (for the multiplier λ), and p is fixed as n go to infinity. These equations can easily be solved, and thus the empirical likelihood ratio can be obtained.
Recently the empirical likelihood ratio method has been shown to also work with censored data and the parameter of weighted mean or weighted hazard. Pan and Zhou (1999) showed that for right censored data the empirical likelihood ratio with mean constraint also have a chi-square limit (Wilks theorem). Murphy and van der Vaart (1997) demonstrated, among other things, that the Wilks theorem hold for doubly censored data too.

Theorem 1 (Pan and Zhou) For the right censored data defined in (1) with a continuous distribution \(F \), cumulative hazard function \(\Lambda \), suppose the null hypothesis is either

\[
H_0 : \int g(t) dF(t) = \theta_0 \quad \text{or} \quad H^*_0 : \int g(t) d\Lambda(t) = \theta_0 .
\]

If \(g(t) \) satisfies certain regularity conditions, then as \(n \to \infty \), the log empirical likelihood ratio has the limit under the null hypothesis

\[
-2 \log ELR(\theta_0) \xrightarrow{D} \chi^2(1)
\]

Theorem 2 (Murphy and van der Vaart) For doubly censored observations (see definition in Example 2), suppose the distribution functions of the random variables involved are continuous and satisfy certain other regularity conditions. Let \(g \) be a left continuous function of bounded variation which, is not \(F_0 \)-almost everywhere equal to a constant. If \(\int gdF_0 = \theta_0 \), then the likelihood ratio statistic for testing \(H_0 : \int gdF = \theta_0 \) satisfies \(-2 \log ELR(\theta_0)\) converges to \(\chi^2(1) \) under \(F_0 \).

For truncated data, we refer readers to Li (1995), the result deals only with \(g(t) = I_{[t \leq C]} \).

These theoretical results painted a bright future for the application of empirical likelihood in the analysis of censored/truncated data. One of the advantages of empirical likelihood method particularly appreciated in the censored/truncated data analysis is that we
can construct confidence intervals without estimating the variance of the statistic, which could be very difficult like in the situation of Theorem 2.

However, in the proofs of the Wilks theorem for the censored empirical likelihood ratio, the maximization of the log empirical likelihood is more complicated than straight use of Lagrange multiplier. It is more of an existence proof rather than a constructive proof. In fact it involves least favorable sub-family of distributions and the existence of such, and thus it do not offer a viable computational method for the maximization of the censored empirical likelihood under mean constraint.

Therefore the study of computational method that can find the relevant censored/truncated empirical likelihood ratios numerically is needed. A good computational method will make the above nice theoretical results practical. We propose in this paper to use a modified EM algorithm to achieve that. We have implemented the algorithm. In fact, the modified EM/self-consistent algorithm we propose can be used to compute empirical likelihood ratios in many other types of censored/truncated data cases as described by Turnbull (1976).

Of course, for problems where a simple Lagrange multiplier computation is available, it will usually be faster than the EM algorithm. Uncensored data, or right censored data with weighted hazard constraint are such cases (Pan and Zhou 1999). But as we point out above, this is not the case for mean type constraints with censored/truncated data.

We end this section with two specific examples where we introduce the notation and setup of censored data with the mean constraint case.

Example 1 Suppose i.i.d. observations $X_1, \cdots, X_n \sim F(\cdot)$ are subject to right censoring so that we only observe

$$Z_i = \min(X_i, C_i); \quad \delta_i = I_{[X_i \leq C_i]}, \quad i = 1, 2, \ldots, n;$$

where C_1, \cdots, C_n are censoring times.

The log empirical likelihood function (LELF) for the survival distribution based on
the censored observations \((Z_i, \delta_i)\) is

\[
L(p) = \text{LELF} = \sum_{i=1}^{n} \left[\delta_i \log p_i + (1 - \delta_i) \log \left(\sum_{j \succ Z_i} p_j \right) \right]
\]

where \(p_i = \Delta F(Z_i) = F(Z_i) - F(Z_i-)\).

To compute the empirical likelihood ratio (Wilks) statistic for testing the hypothesis: \(\text{mean}(g(X)) = \theta\), we need to find the maximum of the above LELF with respect to \(p_i\) under the constraint

\[
\sum_{i=1}^{n} p_i g(Z_i) = \theta, \quad \sum_{i=1}^{n} p_i = 1, \quad p_i \geq 0 ;
\]

where \(\mu\) is given. Similar arguments to those of Li (1995) show that the maximization will force the \(p_i = 0\) except when \(Z_i\) is an uncensored observation. We focus on finding those \(p_i\)s. The straight application of Lagrange multiplier method leads to the equations

\[
\frac{\delta_i}{p_i} + \sum_{k=1}^{n} (1 - \delta_k) \frac{I[Z_k < Z_i]}{\sum_{j \succ Z_k} p_j} - \lambda [g(Z_i) - \theta] - \gamma = 0 \quad \text{for } \delta_i = 1
\]

which do not have a simple solution for \(p_i\).

Example 2: Let \(X_1, \cdots, X_n\) be positive random variables denoting the lifetimes which is i.i.d. with a continuous distribution \(F_0\). The censoring mechanism is such that \(X_i\) is observable if and only if it lies inside the interval \([Z_i, Y_i]\). The \(Z_i\) and \(Y_i\) are positive random variables with continuous distribution functions \(G_{L_0}\) and \(G_{R_0}\) respectively, and \(Z_i \leq Y_i\) with probability 1. If \(X_i\) is not inside \([Z_i, Y_i]\), the exact value of \(X_i\) cannot be determined. We only know whether \(X_i\) is less than \(Z_i\) or greater than \(Y_i\) and we observe \(Z_i\) or \(Y_i\) correspondingly.

The variable \(X_i\) is said to be left censored if \(X_i < Z_i\) and right censored if \(X_i > Y_i\). The available information may be expressed by a pair of random variables: \(T_i, \delta_i\), where

\[
T_i = \max(\min(X_i, Y_i), Z_i) \quad \text{and} \quad \delta_i = \begin{cases} 1 & \text{if } Z_i \leq X_i \leq Y_i \\ 0 & \text{if } X_i > Y_i \\ 2 & \text{if } X_i < Z_i \end{cases} \quad i = 1, 2, \cdots, n.
\]
The log empirical likelihood for the lifetime distribution F is

$$L(p) = \sum_{\delta_i=1} \log p_i + \sum_{\delta_i=0} \log(\sum_{Z_j > Z_i} p_j) + \sum_{\delta_i=2} \log(\sum_{Z_j < Z_i} p_j). \quad (5)$$

We show how to use the EM algorithm to compute the maximum of the above empirical likelihood (under constraint), and also in many other truncated data cases. Examples and simulations are given in section 5.

2. Maximization of empirical likelihood with uncensored, weighted observations

The following is basically a weighted version of Owen (1990) Theorem 1. Suppose we have independent (uncensored, not truncated) observations X_1, \cdots, X_n from distribution $F(\cdot)$. Associated with the observations are non-negative weights w_1, \cdots, w_n. The meaning of the weights are such that if $w_i = 2$, it means X_i is actually 2 observations tied together, etc. But we allow the weights to be fractions for the application later.

The empirical likelihood based on the weighted observations is $\prod (p_i)^{w_i}$ and the log empirical likelihood is

$$\sum w_i \log p_i. \quad (6)$$

Theorem 3 The maximization of the log empirical likelihood (6) with respect to p_i subject to the two constraint:

$$\sum p_i = 1, \quad \sum g(X_i)p_i = \mu$$

is given by the formula

$$p_i = \frac{w_i}{\sum_j w_j + \lambda(g(X_i) - \mu)}$$

where λ is the solution of the equation

$$\sum_i \frac{w_i(g(X_i) - \mu)}{\sum_j w_j + \lambda(g(X_i) - \mu)} = 0.$$
For μ in the range of the $g(X_i)$’s there exist a unique solution of the λ and the p_i given above is also positive.

The proof of the above theorem is similar to (Owen 1990) and we omit the details here.

3. The constrained EM algorithm for censored data

There is a large amount of literature on the EM algorithm, see for example Dempster, Laird, and Rubin (1977). For the particular setting where the parameter is the CDF and observations are censored, see Efron (1967) and Turnbull (1976). In particular, Turnbull (1976) covers a variety of censored/truncated data cases.

It is known that the EM algorithm will converge (e.g., starting from the empirical distribution based on uncensored data only) for the nonparametric estimation of the survival function with right censored data. However, EM algorithm was not used in that situation because an explicit formula exists (the Kaplan-Meier estimator). With a constraint on the mean, there no longer exist an explicit formula. For doubly censored data, it is even worse: there is no explicit formula for the NPMLE with or without mean constraints. EM algorithm may be used to compute both NPMLE. And thus this present opportunity for EM to play its roll and show its muscle here.

We describe below the EM algorithm for censored data.

E-Step: Given F, the weights, w_j, at location t_j can be computed as

$$
\sum_{i=1}^{n} E_F \left[I_{\{X_i = t_j\}} | Z_i, \delta \right] = w_j .
$$

We only need to compute the weights for those locations that either (1) t_j is a jump point for the given distribution F, or (2) t_j is an uncensored observation. In many cases (1) and (2) coincide (e.g., the Kaplan-Meier estimator). The weights w_i for other locations is obviously zero. Also when Z_i is uncensored, the conditional expectation is trivial.
M-Step: with the (uncensored) pseudo observations \(X = t_j \) and weights \(w_j \) from E-Step, we then find the probabilities \(p_j \) by using our Theorem 3 above. Those probabilities give rise to a new distribution \(F \).

A good initial \(F \) to start the EM calculation is the NPMLE without the constraint (if available). In the case of right censored data that is the Kaplan-Meier estimator. If that is not easily available, like in doubly censored cases, a distribution with equal probability on all the possible jump locations can also be used.

The EM iteration ends when the predefined convergence criterion is satisfied.

Example (continue)
Suppose the \(i^{th} \) observation is a right censored one: \((\delta_i = 0) \) the E Step above can be computed as follows

\[
\text{for } t_j > Z_i ; \quad E_F[I_{X_i=t_j}|Z_i, \delta_i] = \frac{\Delta F(t_j)}{1 - F(Z_i)}
\]

and \(E_F[.] = 0 \) for \(t_j \leq Z_i \).

For uncensored observation \(Z_i \), it is obvious that \(E_F[.] = 1 \) when \(t_j = Z_i \) and \(E_F[.] = 0 \) for any other \(t_j \).

For left censored observation \(Z_i \), the E Step above can be computed as follows

\[
\text{for } t_j < Z_i ; \quad E_F[I_{X_i=t_j}|Z_i, \delta_i] = \frac{\Delta F(t_j)}{F(Z_i)}
\]

and \(E_F[.] = 0 \) for \(t_j \geq Z_i \).

Remark: The E-step above is no different then Turnbull (1976). For interval censored or even set censored data the E-Step can also be computed similarly. Our modification is in the M-step.

4. **Truncated and Censored Data**

Similar idea of last section actually carry through for arbitrarily truncated and censored data as described in Turnbull (1976). We first describe in some details the left
truncated and right censored observation case, since this is a common situation seen in practice. We then briefly outline the algorithm for the general case and a theorem that basically says the constrained NPMLE is equivalent to the solution of the modified self-consistent equation.

4.1 Left Truncated and Right Censored Case

For left truncated observations, there is an explicit expression for the NPMLE of CDF, the Lynden-Bell estimator. Li (1995) discussed the empirical likelihood where the parameter is the probability $F(T_0)$ for a given T_0. For left truncated and right censored observations, there is also an explicit NPMLE of the CDF. (Tsai, Jewell and Wang 1987). But to compute the NPMLE under the mean constraint, no explicit formula exist and we need the EM algorithm described here.

Suppose the observations are $(Y_1, Z_1, \delta_1), \ldots, (Y_n, Z_n, \delta_n)$ where the Y’s are the left truncation times, Z’s are the (possibly right censored) lifetimes. Denote by X the lifetimes before censoring/truncation. Censoring indicator δ assumes the usual meaning that $\delta = 1$ means Z is uncensored, $\delta = 0$ means Z is right censored. Truncation means for all i, $(Z_i > Y_i)$, and n is random. We assume Y is independent of X and both distributions are unknown.

The log empirical likelihood pertaining the distribution of X is (see, for example Tsai, Jewell and Wang 1987)

$$L(p) = \sum_{i: \delta_i=1} \left(\log p_i - \log \left(\sum_{Z_j > Y_i} p_j \right) \right) + \sum_{i: \delta_i=0} \left(\log \left(\sum_{Z_j > Z_i} p_j \right) - \log \left(\sum_{Z_j > Y_i} p_j \right) \right).$$

The NPMLE of the CDF puts positive probability only at the locations of observed, uncensored Z_i’s. Denote those locations by t_j.

E-step Given a current estimate $F(\cdot)$ that have positive probability only at t_j’s, we compute the weight

$$w_j = \sum_{i=1}^{n} E_F[I_{[X_i=t_j]}|X_i, \delta_i] + \sum_{i=1}^{n} I_{[t_j < Y_i]} \Delta F(t_j) / P_F(X > Y_i),$$
M-step with the pseudo observations t_j and associated weights w_j obtained in the E-step, we compute a new probability as described in Theorem 3, where the mean constraint weighs in.

The E-step above can be written more explicitly by noticing that (1) the E_F part can be computed same as in the example of the censored data case, and (2) the second term is (without summation)

$$I_{[t_j < Y_i]} \Delta F(t_j) / P_F(X > Y_i) = \frac{I_{[t_j < Y_i]} p_j}{\sum_k I_{[t_k > Y_i]} p_k}$$

where we used $p_j = \Delta F(t_j)$.

4.2 The General Case

This subsection uses the same setup and notation of Turnbull (1976) and should be read along side that paper.

We seek to maximize the empirical likelihood (Turnbull 1976 (3.6)) with a mean constraint

$$\sum_{j=1}^{m} s_j g(t_j) = \mu . \tag{7}$$

Our self-consistent equation (in the context of Turnbull 1976) is just

$$\pi_j^*(s) = s_j \quad j = 1, 2, \cdots m \tag{8}$$

where

$$\pi_j^*(s) = \frac{\sum_{i=1}^{N} \{\mu_{ij}(s) + \nu_{ij}(s)\}}{M(s) + \lambda(g(t_j) - \mu)} . \tag{9}$$

In the above t_j is any value picked (but fixed) inside the interval $[q_j, p_j]$, $M(s), \mu_{ij}, \nu_{ij}$ are as defined by Turnbull 1976, and λ is the solution of the following equation:

$$0 = \sum_{j=1}^{m} \frac{(g(t_j) - \mu) \times \sum_{i=1}^{N} \{\mu_{ij}(s) + \nu_{ij}(s)\}}{M(s) + \lambda(g(t_j) - \mu)} . \tag{10}$$

The function $g(\cdot)$ and constant μ are assumed given.
We now show the equivalence of the modified self-consistency equation (8) with the constrained NPMLE. The log likelihood of the data is given by Turnbull (1976), equation (3.6). To maximize it under the mean constraint (7) and \(\sum s_j = 1 \), we proceed by Lagrange multiplier. Taking partial derivative of the target function

\[
G = \sum_{i=1}^{N} \left\{ \log(\sum_{j=1}^{m} \alpha_{ij} s_j) - \log(\sum_{j=1}^{m} \beta_{ij} s_j) \right\} - \gamma(\sum_{j=1}^{m} s_j - 1) - \lambda(\sum_{j=1}^{m} s_j(g(t_j) - \mu))
\]

with respect to \(s_j \) we get

\[
d^*_j(s) = \sum_{i=1}^{N} \left\{ \frac{\alpha_{ij}}{\sum_{k=1}^{m} \alpha_{ik} s_k} - \frac{\beta_{ij}}{\sum_{k=1}^{m} \beta_{ik} s_k} \right\} - \gamma - \lambda(g(t_j) - \mu).
\] (11)

For \(s \) to be the (constrained) NPMLE, those partial derivatives must be zero. Multiply each of the partial derivatives \(d^*_j(s) \) by \(s_j \) and summation over \(j \), we get \(\gamma = 0 \).

The left side of self-consistent equation (8) can then be written as

\[
\pi^*_j(s) = \frac{s_j}{M(s) + \lambda(g(t_j) - \mu)} \left\{ d^*_j(s) + \lambda(g(t_j) - \mu) + \sum_{i=1}^{N} \left(\sum_{k=1}^{m} \beta_{ik} s_k \right)^{-1} \right\}.
\]

Similar calculation to Turnbull (1976), gives

\[
\pi^*_j(s) = \left\{ 1 + \frac{d^*_j(s)}{M(s) + \lambda(g(t_j) - \mu)} \right\} s_j.
\]

Therefore the self-consistent equation (8) becomes

\[
\left\{ 1 + \frac{d^*_j(s)}{M(s) + \lambda(g(t_j) - \mu)} \right\} s_j = s_j.
\]

Now a similar argument to Turnbull (1976) leads to the

Theorem 4 The solution of the constrained log likelihood equation (11) is equivalent to the solution to the self-consistent equations (8).

5. Empirical Likelihood Ratio Computation

Once the NPMLE of probabilities, \(p_i \), are computed, we can plug them into the log likelihoods as in (2) or (5) or other cases to get the censored/truncated log empirical
likelihood with mean constraint easily. This in turn allows us to compute the empirical log likelihood ratio statistic:

$$-2 \log R(H_0) = -2 \log \frac{\max_{H_0} L(p)}{\max_{H_0+H_1} L(p)}$$

$$= 2 \left[\log(\max_{H_0} L(p)) - \log(\max_{H_0} L(p)) \right]$$

$$= 2 \left[\log(L(\tilde{p})) - \log(L(\hat{p})) \right].$$

(13)

Here \tilde{p} is the NPMLE of probabilities without any constraint; \hat{p} is the NPMLE of probabilities under the constraint of null hypothesis.

Both NPMLEs can be computed by EM algorithm, like in section 3. In some cases, there may be other (faster) methods available to compute \tilde{p}, the NPMLE without constraint. A case in point is the Kaplan-Meier estimator for the right censored data.

After we obtained the \tilde{p} and \hat{p}, the likelihood ratio can be computed and Wilks theorem can then be used to find the P-value of the observed statistic. Thus we can use empirical likelihood ratio to test hypothesis and construct confidence intervals. To illustrate we will show some examples and simulation results in the next section.

6. Simulations and Examples

In this section example with real data and simulation results are reported for right-censored/left-truncated data to illustrate the usefulness of the proposed EM method, and also to illustrate the small to medium sample performance of the chi square approximation.

6.1 Confidence Interval, real data, right censored

The first example concerns Veteran’s Administration Lung cancer study data (for example available from the R package survival). We took the subset of survival times for treatment 1 and smallcell group. There are two right censored observations. The survival times are:
We use the EM algorithm to compute the log empirical likelihood with constraint $\text{mean}(F) = \mu$ for various values of μ. The log empirical likelihood has a maximum when $\mu = 94.7926$, which is the mean computed from the Kaplan-Meier estimator.

The 95% confidence interval for the mean survival time is seen to be $[61.70948, 144.912]$ [Figure 1] since the log empirical likelihood was $3.841/2 = \chi^2(0.95)/2$ below the maximum value (= -93.14169) both when $\mu = 61.70948$ and $\mu = 144.912$. We see that the confidence interval is not symmetric around the MLE, a nice feature of the confidence intervals derived from the empirical likelihood.

6.2 Simulation: right censored data

It is generally believed that for the smaller sample sizes the likelihood ratio/chi square
based inference is more accurate then those obtained by Wald method. The Q-Q plot
[Figure 2] from the following simulation shows that the chi square distribution is a pretty
good approximation of the \(-2\) log empirical likelihood ratio statistic for right censored
data and mean parameter.

We randomly generated 5000 right-censored samples, each of size \(n = 50\) as in equation
(1), where \(X \sim \exp(1)\) and \(C \sim \exp(0.2)\) and \(g(t) = I[t \leq 1]\), or \(g(t) = (1 - t)I[t \leq 1]\). i.e. the
constraint is \(\int_0^1 g(t)d(1 - \exp(-t)) = \mu\). Both plots look similar, we only show here the
one with \(g(t) = (1 - t)I[t \leq 1]\).

![Figure 2: A Q-Q plot for right censored likelihood ratio](image)

We computed 5000 empirical likelihood ratios, using the Kaplan Meier estimator’s
jumps as \((\hat{p})\) which maximizes the denominator in (13) and the modified EM method of
section 3 gave \((\hat{p})\) that maximizes the numerator under \(H_0\) constraint. The Q-Q plot is
based on 5000 empirical likelihood ratios and χ^2_1 percentiles, and is shown in Figure 2. Two vertical lines were drawn at the point 3.84 and 2.71 which are the critical values of χ^2_1 with nominal level 5% or 10%. From the Q-Q plot, we can see that the χ^2_1 approximation is pretty good since the $-2\log$-likelihood ratios are very close to χ^2_1 percentiles. Only at the tail of the plot, the differences between $-2\log$-likelihood ratios and χ^2_1 are getting bigger.

6.3 Simulation and example – Left truncated, right censored Case

We generate (left) truncation times, Y, as shifted exponential distributed random variables, $exp(4) - 0.1$. We generate lifetimes X distributed as $exp(1)$ and censoring times C distributed as $exp(0.15)$. The truncation probability $P(Y > X)$ is around 13.4%. The censoring probability $P(X > C)$ is around 13%.

The triplets, (Y, X, C), are rejected unless we have $Y < X$ and $Y < C$. In that case we return the triplets Y, $\min(X, C)$ and $d = I_{[X \leq C]}$. In the simulation, 50 triplets \{Y, $\min(X, C)$, d\} are generated each time a simulation is run. The function $g(t)$ we used is $t(1-t)I_{[0 < t < 1]}$. The mean of this function is $\mu = (3e^{-1} - 1)$. Figure 3 shows the Q-Q plot of this simulation.

Lastly, let us look at a small data taken from the book of Klein and Moeschberger (1997). The survival times of female psychiatric inpatients as reported in Table 1.7 on page 16 of the above book. $Y = (51, 58, 55, 28, 25, 48, 47, 25, 31, 30, 33, 43, 45, 35, 36)$; $Z = (52, 59, 57, 50, 57, 59, 61, 61, 62, 67, 68, 69, 69, 65, 76)$ and $d = (1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1)$). The mean computed from Tsai-Jewell-Wang estimate is 63.18557. The plot of $-2 \log$ likelihood ratio against changing μ value is similar to Figure 1 and is omitted. The $-2 \log$ likelihood ratio have a minimum of zero at $\mu = 63.18557$ as it should be. A 95% confidence interval for μ are those values of μ that the $-2\log$ likelihood ratio is less than 3.84. In this case it is [58.78936, 67.81304].
7. Discussion

The computational algorithm proposed in this paper covers a wide variety of censored/truncated data cases as described in Turnbull (1976). It enables us to compute the NPMLE of CDF under a mean type constraint. This in turn enables us to compute the $-2\log$ empirical likelihood ratio in those cases. Coupled with empirical likelihood theory (Wilks theorem), the latter can be used to do inference on the functionals of CDF, and we see good small to medium sample performance of this inference method in the examples/simulations.

Turnbull and Weiss (1978) studied a likelihood ratio test with grouped data, (discrete F with finite number of jumps) but used otherwise a similar likelihood. The hypothesis
considered was a goodness of fit type hypothesis.

The asymptotic theory for the constrained NPMLE and for the empirical likelihood ratio lags behind the computation. There is yet a result that covers all the cases described in Turnbull (1976), but see Owen (2001), Murphy and van der Vaart (1997) for some known cases. We conjecture that for left truncated and right censored observations, the asymptotic χ^2 distribution remains valid for the empirical likelihood ratio with a mean constraint (Wilks theorem).

References

